Characterizations of almost transitive superreflexive Banach spaces
نویسندگان
چکیده
Almost transitive superreflexive Banach spaces have been considered in [7] (see also [4] and [6]), where it is shown that such spaces are uniformly convex and uniformly smooth. We prove that convex transitive Banach spaces are either almost transitive and superreflexive (hence uniformly smooth) or extremely rough. The extreme roughness of a Banach space X means that, for every element u in the unit sphere of X, we have lim sup ‖h‖→0 ‖u+ h‖+ ‖u− h‖ − 2 ‖h‖ = 2. We note that, in general, the property of convex transitivity for a Banach space is weaker than that of almost transitivity.
منابع مشابه
Retro Banach Frames, Almost Exact Retro Banach Frames in Banach Spaces (communicated by Oleg Reinov)
In this paper, we give characterizations of retro Banach frames in Banach spaces. The notion of almost exact retro Banach frame is defined and a characterization of retro Banach frame has been given. Also results exhibiting relationship between frames, almost exact retro Banach frames and Riesz bases has been proved. Finally, we give some perturbation results of retro Banach frames and an almos...
متن کاملk-β and k-Nearly Uniformly Convex Banach Spaces
vol. 162, No. 2, 1991 k-β and k-Nearly Uniformly Convex Banach Spaces Denka Kutzarova Different uniform geometrical properties have been defined between the uniform convexity and the reflexivity of Banach spaces. In the present paper we introduce other properties of this type, namely k-β and k-nearly uniform convexity. The definitions, as well as some of the results presented here, are announce...
متن کاملAlmost Transitive and Maximal Norms in Banach Spaces
We prove that the spaces `p, 1 < p < ∞, p 6= 2, and all infinite-dimensional subspaces of their quotient spaces do not admit equivalent almosttransitive renormings. This answers a problem posed by Deville, Godefroyand Zizler in 1993. We obtain this as a consequence of a new property ofalmost transitive spaces with a Schauder basis, namely we prove that in suchspaces the unit...
متن کاملConvexity and Haar Null Sets
It is shown that for every closed, convex and nowhere dense subset C of a superreflexive Banach space X there exists a Radon probability measure μ on X so that μ(C + x) = 0 for all x ∈ X. In particular, closed, convex, nowhere dense sets in separable superreflexive Banach spaces are Haar null. This is unlike the situation in separable nonreflexive Banach spaces, where there always exists a clos...
متن کاملAlmost simple groups with Socle $G_2(q)$ acting on finite linear spaces
After the classification of the flag-transitive linear spaces, the attention has been turned to line-transitive linear spaces. In this article, we present a partial classification of the finite linear spaces $mathcal S$ on which an almost simple group $G$ with the socle $G_2(q)$ acts line-transitively.
متن کامل